A new sketch-based 3D model retrieval approach by using global and local features
نویسندگان
چکیده
With the rapid growth of available 3D models, fast retrieval of suitable 3D models has become a crucial task for industrial applications. This paper proposes a novel sketch-based 3D model retrieval approach which utilizes both global feature-based and local featurebased techniques. Unlike current approaches which use either global or local features, as well as do not take into account semantic relations between local features, we extract these two kinds of feature information from the representative 2D views of 3D models that can facilitate semantic description and retrieval for 3D models. Global features represent the gross exterior boundary shape information, and local features describe the interior details by compact visual words. Specifically, an improved bag-of-features method is provided to extract local features and their latent semantic relations. In addition, an efficient two-stage matching strategy is used to measure the distance between the query sketch and 3D models for selection and refinement. Experiment results demonstrate that our approach which combines these two kinds of complementary features significantly outperforms several state-of-the-art approaches. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملSketch-based 3D Model Retrieval using Keyshapes for Global and Local Representation
Since 3D models are becoming more popular, the need for effective methods capable of retrieving 3D models is becoming crucial. Current methods require an example 3D model as query. However, in many cases, such a query is not easy to get. An alternative is using a hand-drawn sketch as query. In this work, we present a new keyshape based approach named HKO-KASD for retrieving 3D models using roug...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphical Models
دوره 76 شماره
صفحات -
تاریخ انتشار 2014